Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Chem Sci ; 15(11): 3907-3919, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487233

RESUMEN

The continuous rise of antimicrobial resistance is a serious threat to human health and already causing hundreds of thousands of deaths each year. While natural products and synthetic organic small molecules have provided the majority of our current antibiotic arsenal, they are falling short in providing new drugs with novel modes of action able to treat multidrug resistant bacteria. Metal complexes have recently shown promising results as antimicrobial agents, but the number of studied compounds is still vanishingly small, making it difficult to identify promising compound classes or elucidate structure-activity relationships. To accelerate the pace of discovery we have applied a combinatorial chemistry approach to the synthesis of metalloantibiotics. Utilizing robust Schiff-base chemistry and combining 7 picolinaldehydes with 10 aniline derivatives, and 6 axial ligands, either imidazole/pyridine-based or solvent, we have prepared a library of 420 novel manganese tricarbonyl complexes. All compounds were evaluated for their antibacterial properties and 10 lead compounds were identified, re-synthesised and fully characterised. All 10 compounds showed high and broad activity against Gram-positive bacteria. The best manganese complex displayed low toxicity against human cells with a therapeutic index of >100. In initial mode of action studies, we show that it targets the bacterial membrane without inducing pore formation or depolarisation. Instead, it releases its carbon monoxide ligands around the membrane and inhibits the bacterial respiratory chain. This work demonstrates that large numbers of metal complexes can be accessed through combinatorial synthesis and evaluated for their antibacterial potential, allowing for the rapid identification of promising metalloantibiotic lead compounds.

2.
Molecules ; 29(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276575

RESUMEN

The aim of this work is to explore a new library of coordination compounds for medicinal applications. Gallium is known for its various applications in this field. Presently, indium is not particularly important in medicine, but it shares a lot of chemical traits with its above-mentioned lighter companion, gallium, and is also used in radio imaging. These metals are combined with thiosemicarbazones, ligating compounds increasingly known for their biological and pharmaceutical applications. In particular, the few ligands chosen to interact with these hard metal ions share the ideal affinity for a high charge density. Therefore, in this work we describe the synthesis and the characterization of the resulting coordination compounds. The yields of the reactions vary from a minimum of 21% to a maximum of 82%, using a fast and easy procedure. Nuclear Magnetic Resonance (NMR) and Infra Red (IR) spectroscopy, mass spectrometry, elemental analysis, and X-ray Diffraction (XRD) confirm the formation of stable compounds in all cases and a ligand-to-metal 2:1 stoichiometry with both cations. In addition, we further investigated their chemical and biological characteristics, via UV-visible titrations, stability tests, and cytotoxicity and antibiotic assays. The results confirm a strong stability in all explored conditions, which suggests that these compounds are more suitable for radio imaging applications rather than for antitumoral or antimicrobic ones.


Asunto(s)
Complejos de Coordinación , Galio , Tiosemicarbazonas , Galio/farmacología , Galio/química , Indio/química , Tiosemicarbazonas/química , Ligandos , Espectroscopía de Resonancia Magnética , Complejos de Coordinación/química
3.
J Inorg Biochem ; 251: 112438, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38029536

RESUMEN

Cancer continues to pose a global threat, underscoring the urgent need for more effective and safer treatment options. Gold-based compounds have recently emerged as promising candidates due to their diverse range of biological activities. In this study, three gold(III) complexes derived from thiosemicarbazone ligands have been synthesized, fully characterized, including their X-ray crystal structures. We conducted initial mode-of-action studies on DNA and BSA, followed by a comprehensive investigation into the cytotoxic effects of these novel gold(III) complexes on lung cancer cells (A549, H2052, and H28). The results demonstrated a concentration-dependent cytotoxic response, with H28 cells exhibiting the highest sensitivity to the treatment. Furthermore, the analysis of the cell cycle revealed that these compounds induce cell cycle arrest and promote apoptosis as a response to treatment. We also observed distinct morphological changes and increased oxidative stress, contributing significantly to cell death. Notably, these complexes exhibited the ability to suppress interleukin-6 production in mesothelioma cell lines, and this highlights their anti-inflammatory potential. To gain an initial understanding of cytotoxicity on healthy cells, hemolysis tests were conducted against human blood cells, with no evidence of hemolysis. Furthermore, a toxicity assessment through the in vivo Galleria mellonella model underscored the absence of detectable toxicity. These findings prove that these complexes are promising novel therapeutic agents for lung cancer.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias Pulmonares , Tiosemicarbazonas , Humanos , Oro/química , Neoplasias Pulmonares/tratamiento farmacológico , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Hemólisis , Antineoplásicos/farmacología , Antineoplásicos/química , Ligandos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Línea Celular Tumoral
4.
Biology (Basel) ; 12(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37759624

RESUMEN

Increasing reports of neurological and psychiatric outcomes due to psychostimulant synthetic cathinones (SCs) have recently raised public concern. However, the understanding of neurotoxic mechanisms is still lacking, particularly for the under-investigated αPHP, one of the major MDPV derivatives. In particular, its effects on neural stem/progenitor cell cultures (NSPCs) are still unexplored. Therefore, in the current in vitro study, the effects of increasing αPHP concentrations (25-2000 µM), on cell viability/proliferation, morphology/ultrastructure, genotoxicity and cell death pathways, have been evaluated after exposure in murine NSPCs, using a battery of complementary techniques, i.e., MTT and clonogenic assay, flow cytometry, immunocytochemistry, TEM, and patch clamp. We revealed that αPHP was able to induce a dose-dependent significant decrease of the viability, proliferation and clonal capability of the NSPCs, paralleled by the resting membrane potential depolarization and apoptotic/autophagic/necroptotic pathway activation. Moreover, ultrastructural alterations were clearly observed. Overall, our current findings demonstrate that αPHP, damaging NSPCs and the morpho-functional fundamental units of adult neurogenic niches may affect neurogenesis, possibly triggering long-lasting, irreversible CNS damage. The present investigation could pave the way for a broadened understanding of SCs toxicology, needed to establish an appropriate treatment for NPS and the potential consequences for public health.

5.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047568

RESUMEN

The toxicity of nanoparticles absorbed through contact or inhalation is one of the major concerns for public health. It is mandatory to continually evaluate the toxicity of nanomaterials. In vitro nanotoxicological studies are conventionally limited by the two dimensions. Although 3D bioprinting has been recently adopted for three-dimensional culture in the context of drug release and tissue regeneration, little is known regarding its use for nanotoxicology investigation. Therefore, aiming to simulate the exposure of lung cells to nanoparticles, we developed organoid-based scaffolds for long-term studies in immortalized cell lines. We printed the viscous cell-laden material via a customized 3D bioprinter and subsequently exposed the scaffold to either 40 nm latex-fluorescent or 11-14 nm silver nanoparticles. The number of cells significantly increased on the 14th day in the 3D environment, from 5 × 105 to 1.27 × 106, showing a 91% lipid peroxidation reduction over time and minimal cell death observed throughout 21 days. Administered fluorescent nanoparticles can diffuse throughout the 3D-printed scaffolds while this was not the case for the unprinted ones. A significant increment in cell viability from 3D vs. 2D cultures exposed to silver nanoparticles has been demonstrated. This shows toxicology responses that recapitulate in vivo experiments, such as inhaled silver nanoparticles. The results open a new perspective in 3D protocols for nanotoxicology investigation supporting 3Rs.


Asunto(s)
Bioimpresión , Nanopartículas del Metal , Andamios del Tejido , Bioimpresión/métodos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Organoides , Impresión Tridimensional , Ingeniería de Tejidos/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-36767288

RESUMEN

MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on human health is established and interest in them is progressively increasing. Environmental and occupational risk factors affecting human health include chemical agents. Benzene represents a pollutant of concern due to its ubiquity and because it may alter gene expression by epigenetic mechanisms, including miRNA expression changes. This review summarizes recent findings on miRNAs associated with benzene exposure considering in vivo, in vitro and human findings in order to better understand the molecular mechanisms through which benzene induces toxic effects and to evaluate whether selected miRNAs may be used as biomarkers associated with benzene exposure. Original research has been included and the study selection, data extraction and assessments agreed with PRISMA criteria. Both in vitro studies and human results showed a variation in miRNAs' expression after exposure to benzene. In vivo surveys also exhibited this trend, but they cannot be regarded as conclusive because of their small number. However, this review confirms the potential role of miRNAs as "early warning" signals in the biological response induced by exposure to benzene. The importance of identifying miRNAs' expression, which, once validated, might work as sentinel molecules to better understand the extent of the exposure to xenobiotics, is clear. The identification of miRNAs as a molecular signature associated with specific exposure would be advantageous for disease prevention and health promotion in the workplace.


Asunto(s)
Contaminantes Ambientales , MicroARNs , Humanos , Benceno/toxicidad , MicroARNs/genética , MicroARNs/metabolismo , Epigénesis Genética , Biomarcadores
7.
Metallomics ; 14(10)2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36073748

RESUMEN

Many bacterial strains are developing mechanism of resistance to antibiotics, rendering last-resort antibiotics inactive. Therefore, new drugs are needed and in particular metal-based compounds represent a valid starting point to explore new antibiotic classes. In this study, we have chosen to investigate gallium(III) complexes for their potential antimicrobial activity against different strains of Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa which have developed different type of resistance mechanism, including the expression of ß-lactamases (NDM-1, ESßL, or AmpC) or the production of biofilm. We studied a series of thiosemicarbabazones derived from pyridoxal, their related Ga(III) complexes, and the speciation in solution of the Ga(III)/ligand systems as a function of the pH. Proton dissociation constants and conditional stability constants of Ga(III) complexes were evaluated by UV/Vis spectroscopy, and the most relevant species at physiological pH were identified. The compounds are active against resistant Gram-negative strain with minimal inhibitory concentration in the µM range, while no cytotoxicity was detected in eukaryotic cells.


Asunto(s)
Galio , Antibacterianos/farmacología , Escherichia coli , Galio/química , Galio/farmacología , Bacterias Gramnegativas , Ligandos , Protones , Piridoxal/análogos & derivados , Tiosemicarbazonas , beta-Lactamasas
8.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35886972

RESUMEN

We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η6-arene)Ru(N,N')L][PF6]2 containing arene = p-cymene, N,N' = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 µM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT).


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Células A549 , Antineoplásicos/farmacología , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Humanos , Ligandos , Estructura Molecular , Naftalimidas/farmacología , Rutenio/farmacología
9.
J Inorg Biochem ; 234: 111887, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35690039

RESUMEN

Resistant bacteria represent an urgent worldwide threat. NDM-1-producing strains are rendering the last line antibiotics less effective. Six bismuth complexes of general formula BiLCl2, where L is a thiosemicarbazone bearing a quinoline moiety, have been synthesized and fully characterized, including their X-ray crystal structures. The synergistic relationship between the compounds and meropenem have been tested in a combination therapy in carbapenem-resistant Klebsiella pneumoniae (NTCT14331) carrying the NDM-1 gene. Quinoline-2-carboxaldehyde-N4-phenyl-3-thiosemicarbazone bismuth dichloride and carbapenem showed synergism in a dose dependent manner with negligible antibacterial activity when used in a monotherapy and could restore antibiotic sensitivity in the strain producing NDM-1 enzyme. The minimum inhibitory concentration (MIC) of meropenem lowered down 128 folds up to 2 µgmL-1, a concentration lower to the sensitivity level. The IC50 of the compound against A549 human lung carcinoma cells and HuDe human epithelial tissue was 46.96 ± 16.66 µM and 54.26 ± 9.89 µM respectively. The cytotoxicity against human cells was higher than the effective concentration needed for the synergistic effect in bacterial cells, indicating that a structural optimization of the compounds is needed.


Asunto(s)
Quinolinas , Tiosemicarbazonas , Antibacterianos/química , Antibacterianos/farmacología , Bismuto/farmacología , Carbapenémicos/farmacología , Humanos , Klebsiella pneumoniae , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Quinolinas/farmacología , Tiosemicarbazonas/farmacología , beta-Lactamasas/genética
10.
Environ Res ; 212(Pt A): 113216, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35364045

RESUMEN

BACKGROUND: Maternal exposure to air pollutants has been associated with pregnancy complications and adverse birth outcomes. Endothelial dysfunction, an imbalance in vascular function, during pregnancy is considered a key element in the development of pre-eclampsia. Environmental exposure to particulate matter (PM) during the first trimester of pregnancy might increase maternal inflammatory status thus affecting fetal growth, possibly leading to preterm delivery. OBJECTIVES: The purpose of the study was to evaluate possible effects of PM10 and PM2.5 exposure on fetal growth in healthy pregnant women at the end of the first trimester of pregnancy by investigating the relationship between circulating biomarkers of inflammation (IL-6), early systemic prothrombotic effects (CRP, plasma fibrinogen, PAI-1) and endothelial dysfunction (sICAM-1 and sVCAM-1). METHODS: 295 pregnant women were recruited. Individual PM exposure was assigned to each subject by calculating the mean of PM10 and PM2.5 daily values observed during the 30, 60, and 90 days preceding enrolment (long-term) and single lag days back to fourteen days (short-term), and circulating plasma biomarkers were determined. RESULTS: For long-term exposure, we observed an increase in sVCAM-1 and a decrease of PAI-1 levels for each 10 µg/m3 increase in PM10 concentration. Decreases in IL-6 and CRP levels were associated with each 10 µg/m3 PM2.5 increase. For short-term exposure, the levels of sVCAM-1 and PAI-1 were found to be associated with PM10 exposure, whereas fibrinogen levels were associated with PM2.5 exposure. Maternal plasmatic fibrinogen levels were negatively associated with the crown-rump length (p-value = 0.008). DISCUSSION: The present study showed that both long- and short-term exposures to PM are associated with changes in circulating levels of biomarkers in pregnant women reflecting systemic inflammation and endothelial dysfunction/activation. Our findings support the hypothesis that inflammation and endothelial dysfunction might have a central role in modulating the detrimental effects of air pollution exposure during pregnancy.


Asunto(s)
Contaminación del Aire , Exposición Materna , Complicaciones del Embarazo , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Biomarcadores , Exposición a Riesgos Ambientales/análisis , Femenino , Fibrinógeno , Humanos , Inflamación/inducido químicamente , Interleucina-6/sangre , Exposición Materna/efectos adversos , Material Particulado/efectos adversos , Material Particulado/análisis , Inhibidor 1 de Activador Plasminogénico/sangre , Embarazo , Complicaciones del Embarazo/inducido químicamente , Primer Trimestre del Embarazo
11.
Artículo en Inglés | MEDLINE | ID: mdl-35206525

RESUMEN

Sex-related biological differences might lead to different effects in women and men when they are exposed to risk factors. A scoping review was carried out to understand if sex could be a discriminant in health outcomes due to benzene. Studies on both animals and humans were collected. In vivo surveys, focusing on genotoxicity, hematotoxicity and effects on metabolism suggested a higher involvement of male animals (mice or rats) in adverse health effects. Conversely, the studies on humans, focused on the alteration of blood parameters, myeloid leukemia incidence and biomarker rates, highlighted that, overall, women had significantly higher risk for blood system effects and a metabolization of benzene 23-26% higher than men, considering a similar exposure situation. This opposite trend highlights that the extrapolation of in vivo findings to human risk assessment should be taken with caution. However, it is clear that sex is a physiological parameter to consider in benzene exposure and its health effects. The topic of sex difference linked to benzene in human exposure needs further research, with more numerous samples, to obtain a higher strength of data and more indicative findings. Sex factor, and gender, could have significant impacts on occupational exposures and their health effects, even if there are still uncertainties and gaps that need to be filled.


Asunto(s)
Benceno , Exposición Profesional/estadística & datos numéricos , Factores Sexuales , Benceno/análisis , Femenino , Humanos , Incidencia , Masculino , Exposición Profesional/análisis , Medición de Riesgo , Caracteres Sexuales
12.
Nat Commun ; 13(1): 6, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013167

RESUMEN

Myocardial infarction causes 7.3 million deaths worldwide, mostly for fibrillation that electrically originates from the damaged areas of the left ventricle. Conventional cardiac bypass graft and percutaneous coronary interventions allow reperfusion of the downstream tissue but do not counteract the bioelectrical alteration originated from the infarct area. Genetic, cellular, and tissue engineering therapies are promising avenues but require days/months for permitting proper functional tissue regeneration. Here we engineered biocompatible silicon carbide semiconductive nanowires that synthetically couple, via membrane nanobridge formations, isolated beating cardiomyocytes over distance, restoring physiological cell-cell conductance, thereby permitting the synchronization of bioelectrical activity in otherwise uncoupled cells. Local in-situ multiple injections of nanowires in the left ventricular infarcted regions allow rapid reinstatement of impulse propagation across damaged areas and recover electrogram parameters and conduction velocity. Here we propose this nanomedical intervention as a strategy for reducing ventricular arrhythmia after acute myocardial infarction.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos/fisiología , Nanocables , Arritmias Cardíacas/terapia , Compuestos Inorgánicos de Carbono , Ventrículos Cardíacos , Humanos , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Compuestos de Silicona
13.
Artículo en Inglés | MEDLINE | ID: mdl-34639764

RESUMEN

Although Radon (Rn) is a known agent for lung cancer, the link between Rn exposure and other non-pulmonary neoplasms remains unclear. The aim of this review is to investigate the role of Rn in the development of tumors other than lung cancer in both occupational and environmental exposure. Particularly, our attention has been focused on leukemia and tumors related to brain and central nervous system (CNS), skin, stomach, kidney, and breast. The epidemiologic literature has been systematically reviewed focusing on workers, general population, and pediatric population. A weak increase in leukemia risk due to Rn exposure was found, but bias and confounding factors cannot be ruled out. The results of studies conducted on stomach cancer are mixed, although with some prevalence for a positive association with Rn exposure. In the case of brain and CNS cancer and skin cancer, results are inconclusive, while no association was found for breast and kidney cancers. Overall, the available evidence does not support a conclusion that a causal association has been established between Rn exposure and the risk of other non-pulmonary neoplasms mainly due to the limited number and heterogeneity of existing studies. To confirm this result, a statistical analysis should be necessary, even if it is now not applicable for the few studies available.


Asunto(s)
Neoplasias Pulmonares , Exposición Profesional , Radón , Niño , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Exposición Profesional/efectos adversos , Radón/análisis , Radón/toxicidad
14.
Front Oncol ; 11: 700853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552867

RESUMEN

Women with pathogenic germline mutations in BRCA1 and BRCA2 genes have an increased risk to develop breast and ovarian cancer. There is, however, a high interpersonal variability in the modality and timing of tumor onset in those subjects, thus suggesting a potential role of other individual's genetic, epigenetic, and environmental risk factors in modulating the penetrance of BRCA mutations. MicroRNAs (miRNAs) are small noncoding RNAs that can modulate the expression of several genes involved in cancer initiation and progression. MiRNAs are dysregulated at all stages of breast cancer and although they are accessible and evaluable, a standardized method for miRNA assessment is needed to ensure comparable data analysis and accuracy of results. The aim of this review was to highlight the role of miRNAs as potential biological markers for BRCA mutation carriers. In particular, biological and clinical implications of a link between lifestyle and nutritional modifiable factors, miRNA expression and germline BRCA1 and BRCA2 mutations are discussed with the knowledge of the best available scientific evidence.

15.
Int J Mol Med ; 47(6)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33955505

RESUMEN

Dysregulated levels of microRNAs (miRNAs or miRs), involved in oncogenic pathways, have been proposed to contribute to the aggressiveness of malignant pleural mesothelioma (MPM). Previous studies have highlighted the downregulation of miRNA miR­486­5p in patients with mesothelioma and the introduction of miRNA mimics to restore their reduced or absent functionality in cancer cells is considered an important therapeutic strategy. The aim of the present study was to evaluate the mechanisms through which miRNAs may influence the functions, proliferation and sensitivity to cisplatin of MPM cells. In the present study, a miR­486­5p mimic was transfected into the H2052 and H28 MPM cell lines, and cell viability, proliferation, apoptosis and mitochondrial membrane potential were monitored. miR­486­5p overexpression led to a clear impairment of cell proliferation, targeting CDK4 and attenuating cell cycle progression. In addition, transfection with miR­486­5p mimic negatively regulated the release of inflammatory factors and the expression of Provirus integration site for Moloney murine leukaemia virus 1 (PIM1). The sensitivity of the cells to cisplatin was enhanced by enhancing the apoptotic effects of the drug and impairing mitochondrial function. On the whole, the present study demonstrates that miR­486­5p may play an important role in MPM treatment by targeting multiple pathways involved in tumour development and progression. These activities may be mostly related to the downregulation of PIM1, a crucial regulator of cell survival and proliferation. Furthermore, these results provide support for the combined use of miR­486­5p with chemotherapy as a therapeutic strategy for MPM.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mesotelioma/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas c-pim-1/genética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mesotelioma/tratamiento farmacológico , Regulación hacia Arriba/efectos de los fármacos
16.
Environ Pollut ; 284: 117163, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33910133

RESUMEN

Air pollution is well recognized as a central player in cardiovascular disease. Exhaust particulate from diesel engines (DEP) is rich in nanoparticles and may contribute to the health effects of particulate matter in the environment. Moreover, diesel soot emitted by modern engines denotes defective surfaces alongside chemically-reactive sites increasing soot cytotoxicity. We recently demonstrated that engineered nanoparticles can cross the air/blood barrier and are capable to reach the heart. We hypothesize that DEP nanoparticles are pro-arrhythmogenic by direct interaction with cardiac cells. We evaluated the internalization kinetics and the effects of DEP, collected from Euro III (DEPe3, in the absence of Diesel Particulate Filter, DPF) and Euro IV (DEPe4, in the presence of DPF) engines, on alveolar and cardiac cell lines and on in situ rat hearts following DEP tracheal instillation. We observed significant differences in DEP size, metal and organic compositions derived from both engines. DEPe4 comprised ultrafine particles (<100 nm) and denoted a more pronounced toxicological outcome compared to DEPe3. In cardiomyocytes, particle internalization is fastened for DEPe4 compared to DEPe3. The in-vivo epicardial recording shows significant alteration of EGs parameters in both groups. However, the DEPe4-instilled group showed, compared to DEPe3, a significant increment of the effective refractory period, cardiac conduction velocity, and likelihood of arrhythmic events, with a significant increment of membrane lipid peroxidation but no increment in inflammation biomarkers. Our data suggest that DEPe4, possibly due to ultrafine nanoparticles, is rapidly internalized by cardiomyocytes resulting in an acute susceptibility to cardiac electrical disorder and arrhythmias that could accrue from cellular toxicity. Since the postulated transfer of nanoparticles from the lung to myocardial cells has not been investigated it remains open whether the effects on the cardiovascular function are the result of lung inflammatory reactions or due to particles that have reached the heart.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nanopartículas , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Animales , Arritmias Cardíacas/inducido químicamente , Nanopartículas/toxicidad , Material Particulado/análisis , Material Particulado/toxicidad , Ratas , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
17.
Molecules ; 26(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578884

RESUMEN

The synthesis, photoactivation and biological activity of a new piano-stool Ru(II) complex is herein reported. The peculiarity of this complex is that its monodentate ligand which undergoes the photodissociation is an asymmetric bis-thiocarbohydrazone ligand that possesses a pyridine moiety binding to Ru(II) and the other moiety contains a quinoline that endows the ligand with the capacity of chelating other metal ions. In this way, upon dissociation, the ligand can be released in the form of a metal complex. In this article, the double ability of this new Ru(II) complex to photorelease the ligand and to chelate copper and nickel is explored and confirmed. The biological activity of this compound is studied in cell line A549 revealing that, after irradiation, proliferation inhibition is reached at very low half maximal inhibitory concentration (IC50) values. Further, biological assays reveal that the dinuclear complex containing Ni is internalized in cells.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Hidrazonas/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Rutenio/química , Células A549 , Antineoplásicos/química , Complejos de Coordinación/química , Cobre/química , Humanos , Estructura Molecular , Níquel/química
18.
Part Fibre Toxicol ; 18(1): 1, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407654

RESUMEN

BACKGROUND: Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. RESULTS: Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. CONCLUSIONS: Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality.


Asunto(s)
Cobalto/toxicidad , Miocitos Cardíacos , Nanopartículas , Óxidos/toxicidad , Animales , Masculino , Nanopartículas/toxicidad , Estrés Oxidativo , Ratas , Ratas Wistar
20.
Sci Rep ; 10(1): 3205, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081937

RESUMEN

The design of 3D complex structures enables new correlation studies between the engineering parameters and the biological activity. Moreover, additive manufacturing technology could revolutionise the personalised medical pre-operative management due to its possibility to interplay with computer tomography. Here we present a method based on rapid freeze prototyping (RFP) 3D printer, reconstruction cutting, nano dry formulation, fast freeze gelation, disinfection and partial processes for the 5D digital models functionalisation. We elaborated the high-resolution computer tomography scan derived from a complex human peripheral artery and we reconstructed the 3D model of the vessel in order to obtain and verify the additive manufacturing processes. Then, based on the drug-eluting balloon selected for the percutaneous intervention, we reconstructed the biocompatible eluting-freeform coating containing 40 nm fluorescent nanoparticles (NPs) by means of RFP printer and we tested the in-vivo feasibility. We introduced the NPs-loaded 5D device in a rat's vena cava. The coating dissolved in a few minutes releasing NPs which were rapidly absorbed in vascular smooth muscle cell (VSMC) and human umbilical vein endothelial cell (HUVEC) in-vitro. We developed 5D high-resolution self-dissolving devices incorporating NPs with the perspective to apply this method to the personalised medicine.


Asunto(s)
Arterias/diagnóstico por imagen , Bioimpresión/métodos , Nanomedicina/métodos , Nanopartículas/química , Impresión Tridimensional , Angioplastia de Balón , Animales , Supervivencia Celular , Stents Liberadores de Fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Músculo Liso Vascular/citología , Intervención Coronaria Percutánea , Porosidad , Medicina de Precisión , Ratas , Ratas Sprague-Dawley , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...